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Abstract 
 
The aim of this study was to predict and map the regional distribution of the trabecular architecture and the material 

properties of the glenoid and to estimate the predominant loading condition on the glenoid through the mapping. The 
morphological and material characteristics of the glenoid were investigated by analyzing digitized trabecular bone 
images obtained from twelve cadaver scapula specimens. The morphological and material characteristics computed 
from the cadaver specimens show that the predominant loading on the glenoid generally occurs during shoulder 
movement, which produces forces directed toward the posterior aspect of the bare region. This study is innovative in its 
detailed mapping of the morphological and material characteristics of the glenoid and its pioneering approach used to 
estimate the loading pattern acting on the glenoid through the mapping. 
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1. Introduction 

To date, numerous studies have investigated the 
material, mechanics, and morphology of cancellous 
bone [1-23]. Understanding the relationships between 
these characteristics in cancellous bone can provide 
information for determining the risk of bone fracture 
and for planning surgical procedures and rehabili-
tation protocols in individuals with musculoskeletal 
pathologies, particularly in the shoulder joint. Mus-
culoskeletal pathologies influence the material, 
mechanics, and morphology of cancellous bone by 
altering the loading conditions. The ability to predict 

the degree of change in these characteristics should 
reduce the likelihood of the failure of prosthetic 
implants. However, unlike other anatomical regions, 
the glenoid has been the focus of relatively few 
studies of material and morphological characteristics 
with consideration of the functional activities of the 
shoulder. Since the shoulder joint has a complex 
anatomy and mobility, few studies have been 
performed compared to the other skeletal joints. 

In the second half of the 19th century, von Meyer 
[24] and Wolff [25] observed that cancellous bone 
has “a well-motivated architecture, which is closely 
related to its statics and mechanics” and suggested 
that trabeculae align themselves along stress 
trajectories, i.e., the directions in which only pure 
compressive or tensile stress occur [26]. More 
recently, Goldstein et al. [5], Guldberg et al. [6], 
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Tsubota et al. [16], Miller et al. [10], Huiskes et al. [8], 
and van Rietbergen et al. [20] attempted to quantify 
Wolff’s Law by correlating the relationship between 
morphology (trabecular architecture) and mechanics 
(loading and boundary conditions) by using a finite 
element method (FEM) or in vivo experimental test. 
They illustrated the predicted trabecular bone 
adaptation under various mechanical conditions 
through FEM and confirmed that remodeling of the 
trabecular architecture is governed by the mechanical 
conditions acting on bone through in vivo experi-
mental test. These studies offer a clue to under-
standing the mechanics of the glenoid and indicate 
that the predominant loading condition corresponding 
to the material and morphological characteristics may 
be estimated. 

The aim of the current study was to map in detail 
the morphological and material characteristics of the 
glenoid and to estimate the predominant loading 
condition acting on the glenoid through the mapping 
using the relationship between the mechanics and the 
morphology and material. The information may be 
basically significant for studying the mechanical 
behavior of the glenoid and to understanding of a 
variety of pathological shoulder conditions. It also 
may be applicable to related orthopedic implants and 
therapies. 
 

2. Materials and methods 

2.1 Preparation of cadaver specimens 

After examination of the existence of any bone or 
muscle pathology, twelve cadaver scapulae (all from 
people more than 60 years old) were used to deter-
mine the trabecular architecture and material proper-
ties of cancellous bone in the glenoid. The cadaver 
scapulae were harvested, and the glenoid was sliced 
into 2-mm slices. Each section of sliced bone was 
treated to remove the extracellular matrix (ECM: 
marrow) in order to enhance the trabeculae and was 
digitized (640 × 480 pixels) at a resolution of 35 µm. 
Six regions of interest (ROIs, 100 × 100 pixels in 
each ROI) were assigned on each sliced bone (Fig. 1). 
The selection of the ROIs on the digitized images and 
the size of each ROI were determined by the intrinsic 
geometry of the glenoid [27-30]. The distributions 
and sizes of the ROIs considered in the current study 
covered the entire region of the glenoid for analysis of 
the morphological and mechanical characteristics of 
the entire glenoid, as established previously [27-30].  

 

 

  
Fig. 1. Schematic of the locations of the regions of interest 
(ROIs) in the mediolateral (above), supero-inferior (center), 
and anteroposterior (bottom) views. 
 
Vertically, the glenoid was divided into three regions: 
the upper, bare (the area of maximum concavity of 
the glenoid joint surface), and lower regions. Each of 
the three regions was seen in several slices, depending 
on the individual specimen. The different images of a 
particular region were analyzed and averaged for that 
region. This procedure produced a total of 18 regions 
(6 ROIs × 3 regions) representing the six ROIs in the 
upper, bare, and lower regions (Fig. 1). 

 
2.2 Measuring trabecular architecture 

Mean Intercept Length (MIL): The mean intercept 
length (MIL) was measured for each ROI in the 
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digitized images of the glenoid. The basic principle of 
MIL measurement is to count the number of inter-
sections between a linear grid and the trabeculae/ 
marrow interface as a function of the grid orientation 
ω; see Fig. 2 [3, 12]. The MIL, or mean length bet-
ween two intersections, is defined conceptually as the 
total line length (L) divided by the number of 
intersections (I) in angle ω (refer to Eq. 1) [3, 12]. 

 

)(
)(2

ϖI
LpVMIL vp ×=  (1) 

 
where p: the phase of interest (bone or marrow), 
Vv(p): the volume fraction, L: the total line length, I: 
the number of intersections, and ω: the angle of the 
grid line. 

The MIL value was obtained by using Eq. (1). For 
the three-dimensional analysis, it was assumed that 
cancellous bone in the transverse plane is transversely 
isotropic, which implies that the MIL obtained in the 
anteroposterior direction should be the same as that in 
the superoinferior direction. These MILs were 
calculated for all of the ROIs using grids from 0 to 
165°, at 15°-intervals. A factor of 2 was used in Eq. 
(1) because 2 × MIL is the mean length of the bone + 
marrow intercept. 

Predominant Trabecular Direction (Angle): The 
MIL obtained for each ROI was fitted to an ellipse to 
calculate the fabric tensor H. The eigenvalues (MIL 

in the principal axes) and eigenvector (direction of the 
principal axes) of H were calculated as described in 
the literature [2, 3, 9, 13, 14, 17, 18, 31]. The 
eigenvector was then used to determine the primary 
principal axis of the trabeculae in each ROI. Finally, 
the predominant trabecular direction (angle) for each 
ROI was quantified by using the angle between the 
glenoid articular surface axis and the primary 
principal axis (Fig. 3). 

 
2.3 Calculating material characteristics 

In the analysis of the material properties of the 
glenoid, the degree of anisotropy and elastic tensor 
were calculated. The degree of anisotropy and elastic 
tensor were computed from the sliced bone images of 
the cadaver specimens assuming that the glenoid is 
transversely isotropic [3, 27, 28-30]. All these 
parameters were computed for the ROIs defined in 
the measurement of trabecular architecture. 

The normalized eigenvalues (λi = ei/Σei, λ1 + λ2 + λ3 

= 1) calculated from H were used to quantify the 
degree of anisotropy. Although H itself may be used 
to represent the degree of anisotropy [18], the 
anisotropy index is more convenient for under-
standing the overall mechanical and morphological 
characteristics of the glenoid. The anisotropy index 
was determined from second invariant terms (Π = λ1λ2 

+ λ2λ3 + λ3λ1). 

 

 
Fig. 2. Method for calculating the mean intercept length (MIL). Here, the grid for calculating the MIL is selected at 45° on an
ROI chosen from a sliced bone image. The global coordinate system is placed on the center of the glenoid articular surface, and 
the local coordinate is located at the lower-left edge of each ROI. The horizontal axis in the local coordinate system parallels that 
of the global coordinate system. 
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Fig. 3. Method for calculating the angle between the primary 
glenoid axis and the glenoid articular surface axis. The 
glenoid articular surface axis on each ROI is defined by the 
line parallel to the horizontal axis of the global coordinate 
system. 
 
The minimum value corresponds to a unidirectional 
fabric (λ1 = 1, λ2 = λ3 = 0), and the maximum value 
corresponds to isotropic material (λ1 = λ2 = λ3 = 1/3). 
Intermediate values of Π represent intermediate 
degrees of anisotropy. The elastic tensor was 
calculated from the elastic constant and the fabric 
tensor H (Eqs. 2-4) by using a simplified relationship 
suggested by Turner and Cowin [17] that normalizes 
the fabric tensor eigenvalues requirement at 
H1 + H2 + H3 = 1 [32, 17, 33]. 
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where Et: the tissue modulus, λi and λj: the fabric 
tensor, i, j = 1, 2, 3 and i ≠ j, Π = λ1λ2 + λ2λ3 + λ3λ1, 
and k1-k9: constants that are a function of the volume 
fraction (apparent density). 

Here, k1-k9 are obtained from:  
 

p
mbmam kkk νν νν +=)(    (5) 

 
where m = 1, 2, …, 9, p = 1.6, and vv: volume fraction 
(apparent density). 

After reviewing various methods for determining 
constants k1 through k9 [3, 9, 15, 19, 31], we adopted 
the constants reported by Kabel et al. [9]. We 
assumed that k1-k9 can be used for cancellous bone in 
general because the constants determined by Kabel et 
al. [9] are based on the largest range of ages and 
numbers of observations [9, 31]. Finally, the apparent 
density was applied to Eqs. (2-4) to calculate the 
elastic tensor in each ROI. In Eqs. (2-4), Et = 1 GPa 
[9, 19]. The results calculated by using Et = 1 GPa 
can be scaled subsequently by applying other values 
of the tissue modulus to Eqs. (2-4). 
 

3. Results 

On examining the cadaver specimens, no signifi-
cant pathologies were seen. 

 
3.1 Characteristics of trabecular architecture 

Regional Variation in the Mean Intercept Length: 
The respective values of the MIL obtained for the 
primary and secondary principal axes were 0.42 ± 
0.07 and 0.30 ± 0.06 mm for the upper region, 0.44 ± 
0.08 and 0.30 ± 0.06 mm for the bare region, and 0.43 
± 0.07 and 0.30 ± 0.06 mm for the lower region. 
Figure 4 shows the complete distribution of the MIL 
values for the 18 regions, along the primary and 
secondary principal axes. The MILs in the primary 
principal axis for the posterior region are generally 
higher than those for the other regions. The MILs in 
the secondary principal axis are similar for all 18 
regions, unlike the MILs in the primary principal axis. 
The difference (0.18 ± 0.03 mm, maximum) in length 
between the MILs (0.46 ± 0.05 mm, maximum) in the 
primary principal axis and the MILs (0.28 ± 0.04 mm, 
maximum) in the secondary principal axis for the 
posterior region was greater than the difference for 
the other regions of the glenoid. This indicates that 
the posterior region is very anisotropic and that the 
trabeculae in this region are better adapted to loading 
conditions than are those in other regions. The MILs 
calculated for each ROI of the glenoid show a peak in 
the range of 75 to 120° relative to the glenoid articular 
surface axis (Fig. 5). This indicates that the load 
distributed on the glenoid articular surface is greatest 
at the center of the glenoid. 

Predominant Trabecular Direction (Angle): The 
predominant trabecular direction (angle) was 89.4 ± 
10.1° when the entire glenoid was considered as a 
single region. The predominant trabecular direction in 
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each region is shown in detail in Fig. 6. The di-
rections in all of the ROIs are nearly perpendicular to 
the glenoid articular surface axis. The predominant 
trabecular direction in the anterior portion (95.4 ± 
9.5°, directed anteriorly) of the lateral region is 
oriented rather anteriorly relative to the glenoid 
articular surface axis compared with that in the central 
(87.9 ± 7.7°, directed posteriorly) and posterior (89.8 
± 7.3°, directed posteriorly) portions of the lateral 
region. 

The predominant trabecular directions in the 
anterior, central, and posterior portions of the medial 
region are 92.8 ± 12.5° (directed anteriorly), 86.0 ± 

10.0° (directed posteriorly), and 84.7 ± 8.8° (directed 
posteriorly), respectively. These results were obtained 
when the entire glenoid was classified into three 
broad regions, the anterior, central, and posterior 
regions. The predominant trabecular directions in the 
upper, bare, and lower regions were 89.4 ± 10.1°, 
89.3 ± 10.6°, and 89.6 ± 9.6°, respectively, indicating 
that the glenoid is subjected to loading that is 
predominantly directed perpendicular to the glenoid 
articular surface. 

 
3.2 Material characteristics of glenoid 

Regional Variation of Degree of Anisotropy: The 

 
 
Fig. 4. MIL in the primary and secondary axes for the entire glenoid (L: lateral, M: medial, 1: anterior, 2: center, 3: posterior). 
The first and second columns for each ROI indicate the MIL in the secondary and primary axes, respectively. 

 

 
 
Fig. 5. An example of the MIL distribution on an ROI located in the posterior portion of the glenoid, with the change in grid
angle. The MILs in the ellipse are all higher than those at other angles. 
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degree of anisotropy was 0.327 ± 0.003 when 
considering the entire glenoid as a single region. The 
corresponding reference value for exact isotropic 
behavior is 0.333. The glenoid in this section is not 
very anisotropic when considered as one region--it is 
close to isotropic. The degree of anisotropy is 
generally larger in the posterior than in the anterior or 
central regions. The degree of anisotropy in the lateral 
region of the glenoid is higher than that in the medial 
region. 

Regional Variation of Elastic Tensor: The elastic 
tensor (units: MPa) calculated over the entire glenoid 
was: 
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The following are the elastic tensors (units: MPa) 
for three broad regions of the glenoid, the upper, bare, 
and lower regions: 

Upper region 

127 25 52 10 44 8 0 0 0
52 10 296 81 52 10 0 0 0
44 8 52 10 127 25 0 0 0

0 0 0 62 12 0 0
0 0 0 0 45 9 0
0 0 0 0 0 62 12

± ± ±⎡ ⎤
⎢ ⎥± ± ±⎢ ⎥
⎢ ⎥± ± ±
⎢ ⎥

±⎢ ⎥
⎢ ⎥±⎢ ⎥

±⎢ ⎥⎣ ⎦

 

 
Bare region 
135 32 56 13 47 11 0 0 0
56 13 332 109 56 13 0 0 0
47 11 56 13 135 32 0 0 0

0 0 0 66 16 0 0
0 0 0 0 48 12 0
0 0 0 0 0 66 16

± ± ±⎡ ⎤
⎢ ⎥± ± ±⎢ ⎥
⎢ ⎥± ± ±
⎢ ⎥

±⎢ ⎥
⎢ ⎥±⎢ ⎥

±⎢ ⎥⎣ ⎦

 

 
Lower region  

131 11 54 4 45 3 0 0 0
52 10 308 37 54 4 0 0 0
45 3 54 4 131 11 0 0 0

0 0 0 64 52 0 0
0 0 0 0 47 4 0
0 0 0 0 0 64 5

± ± ±⎡ ⎤
⎢ ⎥± ± ±⎢ ⎥
⎢ ⎥± ± ±
⎢ ⎥

±⎢ ⎥
⎢ ⎥±⎢ ⎥

±⎢ ⎥⎣ ⎦

 

 
 
Fig. 6. Predominant trabecular directions (average angle) and their distributions (standard deviation) in the ROIs. Straight,
dashed, and dotted lines represent the predominant directions, in the upper, bare, and lower regions, respectively. The values in
the first, second, and third rows in the ROIs are the predominant numerical angles in the upper, bare, and lower regions,
respectively. 
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Although the elastic tensor values computed from 
the cadaver specimens are higher than the elastic 
modulus values calculated from the CT scans, the 
results compare more favorably with reported data 
than do the elastic modulus results [27-30]. This 
suggests that the elastic tensor calculated after 

considering both the trabecular architecture and the 
apparent density on the CT scans is more realistic 
than the elastic modulus calculated directly from the 
CT scan. The elastic tensors calculated in each ROI 
are shown in Fig. 7. The regional variation in the 
elastic tensor for the entire glenoid is similar to that of 

      

(a)                                             (b) 

 

      

(c)                                               (d) 

 

      

(e)                                                (f) 
 
Fig. 7. Regional distribution of the elastic tensors (a) E2222, (b) E1111 = E3333, (c) E3311, (d) E1122 = E2233, (e) E3131, (f) E1212 = E3131

throughout the glenoid (L: lateral, M: medial, 1: anterior, 2: center, 3: posterior). 
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the compressive strength and elastic modulus des-
cribed above, suggesting that the load on the glenoid 
is as described in above. 
 

4. Discussion and conclusions 

The MIL method was used to determine the 
morphological and mechanical characteristics of the 
glenoid. The MIL method, which evaluates the planar 
trabecular alignment, can sometimes be a poor pre-
dictor of porous architecture [12]. However, Kabel et 
al. [9], van Lenthe and Huiskes [19], and others [3, 
12] have reported that the MIL method performs 
slightly better than the volume-based methods (VO 
and SVD) in calculating the elastic tensor (mecha-
nical characteristic) of cancellous bone, and the MIL 
method is sufficient to explain the trabecular archi-
tecture. The MIL method is also simpler than the 
volume-based methods. Therefore, we adopted the 
MIL method for the morphological analysis and for 
calculating the elastic tensor of the glenoid. 

Little is known about the material properties of 
cancellous bone in the glenoid. Frich et al. [28] 
reported the topographic bone strength distribution as 
predicted by using the osteo-penetration test and 
elastic constants computed from the conventional in 
vitro compressive test. The strength at the proximal 
subchondral level of the glenoid averaged 66.0 MPa. 
High peak values were measured posterior, superior, 
and anterior to the area of maximum concavity of the 
glenoid joint surface. The average strength decreased 
by 25% at 1 mm below the subchondral plate and by 
70% at 2 mm below it. The elastic modulus ranged 
from approximately 100 MPa for the bare area of the 
glenoid to 400 MPa in the superior part of the glenoid. 
Using the elastic constants to predict the mechanical 
anisotropy, the average anisotropy ratio was 5.2, 
indicating strong anisotropy. The apparent density 
averaged 0.35 g cm-3, and the Poisson ratio averaged 
0.263. Mansat et al. [30] measured the elastic 
properties of the glenoid bone in the axial, coronal, 
and sagittal planes using an ultrasound transmission 
technique. The relative density and CT numbers (in 
Hounsfield units) were also assessed. They found 
significant differences in the material properties at 
different anatomic locations. The material properties 
of cancellous bone were higher near the direction of 
application of the resultant force, perpendicular to the 
articular surface of the glenoid. The material 
properties were significantly higher at the center and 

posterior edge of the glenoid. Significant differences 
were also found in the three planes studied. The 
lateromedial Young’s modulus (E1 = 372 ± 164 MPa) 
was higher than the anteroposterior (E2 = 222 ± 79 
MPa) and superoinferior (E3 = 198 ± 75 MPa) moduli. 
Using an indentation test, Anglin et al. [27] reported 
on the modulus and strength of glenoid cancellous 
bone in more detail, including regional variation. In 
that study, the measured mean strength of ten glenoid 
bones ranged from 6.7 to 17 MPa, with an overall 
mean of 10.3 MPa, and the mean elastic moduli 
ranged from 67 to 171 MPa for individual glenoid 
bones, with an overall mean of 99 MPa. They thought 
that these values were lower than those of normal 
bone because strength and modulus decrease with age 
and their specimens were from older subjects. They 
found that the strongest region was posterosuperior 
and that there was a large drop in strength and 
modulus below the subchondral layer. 

The index of anisotropy (0.327 ± 0.003 for the 
entire glenoid) shows that the cancellous bone of the 
glenoid is close to isotropic. The corresponding 
reference value for exact isotropic behavior is 0.333. 
This supports the validity of the assumption of 
isotropic material in biomechanical studies of the 
glenoid, particularly in FE model development. The 
degree of anisotropy is generally larger in the 
posterior than in the anterior or central regions. This 
matches the results obtained for the apparent density, 
compressive strength, and elastic modulus. The 
degree of anisotropy is higher in the lateral region of 
the glenoid than in the medial region, which implies 
that the lateral region of the glenoid is more sensitive 
to loading conditions than is the medial region. 

The trabecular architecture of the glenoid generally 
shows that the trabeculae in the glenoid are primarily 
aligned perpendicular to the glenoid articular surface. 
The trabeculae in the posterior portion and bare 
region are more effectively aligned to bear forces 
normal to the glenoid articular surface. These findings 
suggest that the glenoid is primarily subjected to 
higher loads in the posterior and bare regions. The 
compressive strength, elastic modulus, and elastic 
tensors in the posterior portion of the bare region of 
the glenoid were consistently 1.5 times the values in 
the other regions. This agrees with the characteristics 
of the trabecular architecture described above. 
Likewise, the trabeculae are inclined slightly 
anteriorly (average predominant trabecular direction: 
91.1 ± 8.8°) in the lateral region of the glenoid (refer 
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to Fig. 6). This confirms that the posterior area is 
loaded more intensely than the anterior or central 
regions. All these results concur with the regional 
variations reported for the material properties, such as 
bone density or strength [27-30], and the mechanical 
characteristics, such as loading conditions on the 
glenoid [34, 13, 22]. This suggests that an analysis of 
the morphological and mechanical characteristics of 
the trabecular bone would help to predict the 
predominant loading placed on the glenoid. 

The material investigated in this study was from the 
cadavers of normal elderly adults, owing to the 
limited availability of cadaver specimens. In the fu-
ture, this study will be expanded to include pa-
thological conditions and various age groups. The 
results may be used to explain the morphological and 
mechanical characteristics of the glenoid with mus-
culoskeletal pathology and the consequent variation 
in the predominant loading condition on the glenoid. 
This study was innovative in its detailed mapping of 
the morphological and material characteristics of the 
glenoid and its pioneering approach used to estimate 
the loading pattern acting on the glenoid through the 
relationship between the mechanics and the mor-
phology and material. The results obtained here may 
also be used to understand a variety of pathological 
shoulder conditions and may be applicable to related 
orthopedic implants and therapies. 
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